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Abstract

Since Dailey et al. first described the possible correlation between inflammation caused by autoimmune diseases
and thyroid cancers in 1955, the majority of the events involving these two conditions have not been clearly
elucidated, and this association is still very controversial in the literature. Chronic inflammation predisposes the
organism to cell proliferation reactions, cytokines secretion and other phenomenas that influence rearrangements
and mutations in thyroid follicular cells. Thus, is possible that in thyroid autoimmune phenotypes, the same
mechanistic forces occur, mainly by the similarity of molecular events that affect both diseases. The large quantity of
pro-inflammatory substances secreted within thyroid milieu in a chronic autoimmune condition, and the imbalance
between anti and pro-apoptotic effectors, result in thyroid cells transformation, reducing thyroid hormones synthesis.
Key important events regarding chronic inflammation momentum are those driving PTC carcinogenesis and its
deregulation of the MAPK signaling pathway, causing rearrangements of RET/PTC, TRKA and mutation points in
RAS and BRAF. In this review, we highlight the most relevant molecular events on thyroid disorders, giving an
especial attention to mechanisms that drive molecular protagonists.
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Introduction
The thyroid is an endodermal endocrine gland [1-4],

macroscopically characterized by a loose connective tissue capsule
from where septae run into the gland, dividing it into lobes and lobules
[4,5]. Its function is to synthesize and store thyroxine (T4) and
triiodothyronine (T3) and calcitonin hormones, controlling body
metabolism [4,6]. This gland consists of thousands of thyroid follicles,
vesicular endocrine glands coated by simple cuboidal epithelium and C
cells (or parafollicular cells) [4,5,7]. The cavity of the follicles contains
a gelatinous substance called colloid [4,8].

Among the diseases that occur in the thyroid, the most commonly
diagnosed is the Hashimoto's Thyroiditis (HT) - an autoimmune
disease - and different types of thyroid cancer [9-12].

Hashimoto's Thyroiditis (HT)
Hashimoto's Thyroiditis (HT) was first described by Hashimoto in

1912 [13]. HT is an autoimmune disease caused by the production of
anti-thyroid antibodies that results in chronic inflammation of the
thyroid, which ultimately leads to the destruction of the gland,
compromising its functionality [14].

In this condition, it is observed a widespread infiltration of
eosinophils and lymphocytes that causes parenchymal alterations and
progressive loss of follicular cells, which leads to thyroid tissue
replacement and fibrosis [15]. These events result in fibrotic phenotype
and parenchyma atrophy [16-19].

As the HT causes loss of epithelial cells, a replacement by fibrotic
tissue takes place as a phenotypic result from the tissue remodeling, as
well as a proliferation of autoreactive CD4 + T helper cells. These tissue
disruptions of the thyroid architecture result in a phenotype of
progressive hypothyroidism, increasing functionality loss [16].

There are cytological abnormalities in HT, as nodules proliferation
and changes in cell nucleus similar to those occurring in papillary
thyroid carcinoma (PTC), which will be described later on this review
[20]. As for the pathogenesis of HT, it is known that genetic and
environmental factors predispose the expression of the disease [20-24].

Among the exogenous factors that increase the incidence of HT, we
highlight: (i) iodine supplementation in geographical areas where there
is shortage of this element, (ii) the continued use of amiodarone
hydrochloride and lithium, (iii) interferon and interleukin-2 therapies
[25-29], (iv) incidence of some viral types such as T-lymphotropic
virus type 1 (HTLV-1), and (v) Yersinia enterocolica (family
Enterobacteriaceae) [21].

Patients with Turner Syndrome, Alzheimer's disease on family
history and with Down Syndrome are more likely to have HT disease,
as its occurrence is linked to environmental and endogenous factors
due to a genetic predisposition [21].

Some genes that influence genetic predisposition to HT are related
to the families of: (i) human leukocyte antigen DR (HLA-DR), (ii)
thyroid stimulating hormone receptor (TSHR), (iii) thyroglobulin (Tg)
producing genes, and (iv) protein tyrosine phosphatases non-receptor
type 22 (PTPN22) [23,24]. In addition to those, dysfunction of the
genes families (i) CD40–related to a decreased CD40 expression on B
cells – APCs, and thyrocytes [23,24], (ii) RET/PTC, proto-oncogene,
(iii) RAS and BRAF, proto-oncogene [30], (iv) hOGG1 – a major
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repair gene for free radical-induced oxidative DNA damages [31], and
also (viii) FOXP3, a transcription factor involved in the development
and function of regulatory T cells [32].

One of the most important altered gene groups in HT is the
regulatory gene family immunity antigen 4, associated with the
cytotoxic T lymphocyte (CTL-4), which regulates the expression of
these proteins in T cells, while competing with CD28 for B7-1 and
B7-2 receptors, causing the reduction of the secondary signal
transmission of the T cell inactivation pathway, and subsequent
apoptosis [21,33-35].

The mechanism behind this disrupted self-immune response seems
to be quite complex, the general immunological mechanism is better
described by the infiltration of thyroid gland by B and T lymphocytes,
which are directly involved in cell apoptosis events. The secreted
cytokines result in extensive lymphocytic infiltration, triggering the
destruction of thyroid cells [24,36].

The T lymphocyte helper Th1 produces IL-2, IFNƴ, and TFNα and β
causing a cascade of reactions that initiate cytotoxic and inflammatory
activities. Moreover, the cytokines IL-4, IL-5, IL-6, IL-10, and IL-13
produced by T lymphocyte helper Th2 activates the process of
antibody production and increases the amount of eosinophils and mast
cells [21].

Regarding the role of IFNƴ in the autoimmune process of HT, this
effector acts as an amplification enhancer of CXCL10 Th1 modulated
(the prototype of the IFNƴ-inducible Th1 chemokines) [37,38]. This
chemokine is, therefore, secreted by the thyrocytes that display a
chronic infiltration of TNF-α [37], becoming a marker of a Th1
orientated immune response [39]. In this scenario, “…CXCL10 could
be a marker of a stronger and more aggressive inflammatory response
in the thyroid, subsequently leading to thyroid destruction and
hypothyroidism…” [38].

Although, Hashimoto's Thyroiditis (HT) have been described for
decades as a Th1 autoimmune disease, there were some phenotypic
results that could not be explained solely by the Th1/Th2 hypothesis
[40]. A new group of T cells (Teff), T helper 17 cells (Th17), have been
described as an important immune effector on the development of TH
[40,41], as well as in other autoimmune diseases such as multiple
sclerosis/experimental autoimmune encephalitis, uveitis, rheumatoid
arthritis, Sjogren’s Syndrome, myasthenia gravis, and psoriasis
[16,40,41].

The signaling activation of Th17 induces the production of
interleukin 17 (IL-17), interleukin 21 (IL-21) and interleukin 22
(IL-22). For Th17 differentiation regime, other important effectors are
necessary to keep the signaling activate: TGF-b, interleukin 6 (IL-6),
interleukin 23 (IL-23) and interleukin 1 (IL-1) [42]. This pathway was
also corroborated by the work of Figueroa-Vega et al. [43] that
investigated patients with HT. Their research described an increased
number of Th17 cells, increased levels of IL-17 mRNA and a stronger
immunohistochemical expression of IL-17 and IL-22 in thyroid tissues
in HT patients [43].

Another evidence supporting HT as a Th17 phenotype autoimmune
disorder instead of a Th1 phenotype was described by Horie et al.[44].
Using non-obese diabetic-H2h4 mice, they showed a decreased
severity of thyroiditis in IL-17 knockouts.

Recently, Zhu et al. [41] described a new subset of follicular helper T
(Tfh) cells and interleukin 21 (IL-21), which regulate the development
of antigen-specific B-cell immunity, present in human autoimmune

thyroid diseases (AITD) (as Graves’ disease (GD) and HT). Thus, this
work gives support to the idea that Tfh cells might play an important
role in the pathogenesis of AITDs through activation of antigen-
specific helper T, and again not only through Th1 activation.

The large quantity of pro-inflammatory substances secreted by those
cells, and the imbalance between anti and pro-apoptotic molecules,
result in thyroid cells destruction. This leads to a reduction in thyroid
hormones synthesis, which make the cells defective in thyroid iodine
organification. Therefore, T cells, in addition to having cytotoxic
activity to thyroid epithelial cells, also stimulate B cells to produce anti-
thyroid antibodies (anti-TPO, anti-TG and antirreceptor antibody
TSH) [24,32,36,45].

Thyroid Cancers and Papillary Thyroid Carcinoma
(PTC)
Thyroid cancer is the most common endocrine neoplasia [46], and

represents 1.1% of all malignant tumors diagnosed worldwide,
affecting more the female gender [9,47]. According to the SEER
database (Surveillance Epidemiology and End Results; National
Cancer Institute, http://www.seer.cancer.gov, accessed on 30th August
2015) in the United States of America (USA), approximately 13.5 per
100,000 individuals per year present this condition. In recent years,
there has been a significant growth in global rates, which positions this
affection as the fastest growing in incidence rates among all types of
cancer (an increase of 5% per year between 2002 and 2012) [46].

These types of cancer are heterogeneous, with distinct histological,
anatomical and clinical characteristics. They can be divided into four
categories: (i) the medullary carcinoma (which is derived from
parafollicular cells), (ii) anaplastic or undifferentiated carcinoma, (iii)
follicular thyroid carcinoma (FTC), (iv) and papillary thyroid
carcinoma (PTC). The FTC and PTC are well-differentiated
carcinomas, which are originated in the follicular cells [48,49]. The
FTC has a variant called Hurthle Cell Carcinoma [50,51]. Although,
papillary carcinoma is the most common type, it has the best
prognosis. In the other hand, the follicular carcinoma is rare and has
the worst prognosis [50,52].

The PTC has distinct morphological characteristics [53,54],
presenting oval and elongated contour core forms, stacking of the
nucleus, inclusions and cracks, and the tendency to form metastases,
which are taken to the lymph nodes. The main forms of
histopathological variants are: (i) classical, (ii) the follicle, (iii) tall cells,
and (iv) diffuse sclerosing [54,55]. Each one of them has different
phenotypes, and also differentiated morbidity and mortality rates
[54,56].

Among de molecular characteristics of PTC, there are those related
to changes in chromosomal rearrangements such as RTK, RET and
TRKA, and those related to mutational changes like BRAS, RAS, PI3K,
PTEN, IDH1 and p53 [57-63].

One of the most important alterations present in the PTC occurs in
the encoding gene of the RET protein (discussed in details later on),
which is also associated with molecular modifications in thyroid tissue
of Hashimoto's Thyroiditis (HT) patients [64-66].

Thyroid Cancers and Chronic Inflammation
In most neoplasias, the relationship between chronic inflammation

and cancer development seems to be well established: gastric infection
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by Helicobacter pylori, which causes chronic gastritis, increases the
risk of gastric cancer by 75% [67-70]; Crohn's disease and ulcerative
colitis are associated with colorectal cancer [67,69-72]; both the viral
Hepatitis B and C and alcoholic liver cirrhosis are described as
progression factors of hepatocellular carcinoma [69,70,73];chronic
reflux esophagitis can result in Barrett's carcinoma [70,71]; cervical
infection by Human Papillomavirus (HPV) results in cervical cancer
[70]; prostatitis is associated with prostate cancer [67-69].

Nevertheless, the association between chronic inflammation caused
by HT and PTC has been described as controversial [74,75]. Since
Dailey et al. first described the possible correlation between
inflammation and thyroid cancers in 1955, the majority of the events
involving these two conditions have not been clearly elucidated
[65,74,76].

Molecular Events of Hashimoto's Thyroiditis (HT) and
Papillary Thyroid Carcinoma (PTC)

Although controversial, the increasing incidence of Hashimoto’s
Thyroiditis (HT) and Papillary Thyroid Carcinoma (PTC) suggests
that there is a close relationship between these conditions [77]. Studies
reveal associations between the presence of anti-thyroid antibodies and
the progression of malignancies [30,65,78].

Frequently, chronic inflammation predisposes the organism to cell
proliferation reactions, cytokines secretion and other phenomena that
influence rearrangements and mutations in follicular cells [52,79,80].
In their microenvironment, cancer cells secrete cytokines and
chemokines, enabling positive feedback regarding the regulation of
neoplasia immunomodulation. In a positive feedback, these elements
of the immune system recruit leukocytes to tumor site, thus producing
reactive oxygen species (ROS) and reactive nitrogen species (RNE) in
an attempt to eliminate the pathogens [59,80,81].

However, because they are very reactive metabolites, they induce the
production of mutagenic agents causing damage to the DNA [59,80].
When the damaged cells neighbor DNA mutations or gene
rearrangements, there is an increase in the likelihood of oncogenes
activation, as well as loss of tumor suppressor functions, such as the
p53 gene [66,82].

One of the most important events in the PTC carcinogenesis is the
deregulation of the Mitogen-activated Protein Kinase (MAPK)
signaling pathway with rearrangements of RET/PTC, TRKA and
mutation points in RAS and BRAF, where these nucleotide base
changes contribute significantly to the PTC genotypes [30,79,83]. In
PTC, these gene mutations can occur in 70% of the cases [30,65].

Borrello et al. [84] showed that the oncogene RET/PTC1 expressed
in human thyrocytes induces a myriad of molecular events such as i)
inflammatory genes modulation, M-CSF, GM-CSF, G-CSF (stimulating
factors and colonization of macrophages) [84]; ii) production of
chemokines and cytokines such as CCL20, CXCL8 [84-86], which are
related to E-cadherin expression, consequently increasing the
metastatic events [87], and CXCR4 (chemokine receptor type 4)
upregulating the MAPK1/MAPK3 activation, IL-1B mediating an
inflammatory response involved with cell proliferation events,
differentiation and apoptosis[88]; iii) enzymes that degrade the matrix
and adhesion molecules: MMP14 (related to collagen degradation),
MMP7 (matrilysins production, fibronectin degradation and pro-
collagenase activation), MMP9 (gelatinase production), MMP10
(stromelysins production, fibronectin degradation and activation of

the pro-collagenase) and L-selectin (leukocyte adhesion molecules);
and iv) other proinflammatory transcription related elements such as
UPAR (monocyte activation) [86,89].

In thyroid cells that are positive to RET/PTC rearrangements,
chemokines and cytokines released by tumor stroma collaborate to cell
survival by selecting clones with gene mutations and apoptosis
resistance, which are induced by these oncogenes [30,88].

The RET/PTC3-RAS-BRAF axis triggered upregulation of CXC
chemokines and their receptors, which in turn stimulate the mitogenic
and invasive capacity of thyroid cancer cells [89-92]. In this signaling
mechanism, the tumor microenvironment modulates an autocrine/
paracrine pathway, overexpressing several chemokines that positively
feedback the mitogenic and invasive phenotypes in cancer [59,93].

In a very elegant work, Melillo et al. [89] described the activation of
RET/PTC3-RAS-BRAF axis and its relevance on chemokines
modulation on sustained proliferation and motility of thyroid tumor
cells. Using genomic, transcriptomic and proteomic assays on thyroid
cell cultures (PC Cl 3 (PC) and follicular cell line – derived from 18-
month-old Fischer rats on Matrigel® –, they demonstrated that RET/
PTC3-RAS-BRAF axis acts synergistically to alter thyroid cells (in vitro
and in vivo) into an invasive phenotype. Moreover, CXCL1 and
CXCL10 were key effectors on this malignant transformation [89].
According to Guarino et al.[30], the immune system cells play an
ambiguous role in thyroid cancer, since the resultant phenotype
depends on specific cells population, as the effect can be pro-
tumorigenic or anti-tumorigenic [30]. Particularly, the presence of
innate immunity cells, as observed in pathological phenotypes in HT,
increase tumor progression and is associated with a poor prognosis
[30,65].

Other researches on molecular alterations caused by thyroid
neoplasms suggest that RAS and BRAF proteins, all components of
RET-PTC/RAS/BRAF/ERK pathway can interfere with chemokines
regulation, which also contribute to proliferation, migration and
survival of neoplastic cells [89].

Although, the histopathology and the mechanistic events on the
majority of thyroid disorders have been, in some level, characterized,
new important data with a strong application on clinics still being
adding on those events. Recently, Nikiforov et al. [94] reclassified,
through a retrospective study, the follicular variant of PTC (FVPTC),
regarding its subsets: infiltrative (or nonencapsulated) and
encapsulated. Their findings generate relevant information on clinical
conduct to noninvasive follicular thyroid neoplasms with papillary-like
(NIFTP) thyroid cancers, indicating that 45,000 patients worldwide
would be affect with this new reclassification, “… reducing the
psychological burden, medical overtreatment and expense, and other
clinical consequences associated with a cancer diagnosis…” [94].

Conclusion
As Wirtschafter et al. [57] and other authors [59,80,84,86]

described, there are strong evidences that Hashimoto's Thyroiditis
(HT) is a prior condition for papillary thyroid carcinoma (PTC); this
conclusion comes from the literature, which points out that there is an
increase incidence of cancer in patient with HT. Inflammation can
predispose the cell and metabolism rearrangement through well-
orchestrated molecular events, causing the development of cancer
phenotype, progressed by the chronic inflammatory momentum.
Therefore, a chronic inflammatory environment, derived from
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Hashimoto's Thyroiditis, in addition to metabolic disorder caused by
neoplastic events, produce synergistic effects of negative prognosis on
the progression of both diseases (HT and PTC).The milieu of these
events results in the rearrangement of RET/PTC gene in follicular cells,
as the primer alterations.
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